Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by Zoledronic acid

نویسندگان

  • Xing Li
  • Wen Sun
  • Jinbo Li
  • Mengmeng Wang
  • Hengwei Zhang
  • Lingpeng Pei
  • Brendan F. Boyce
  • Zhiyu Wang
  • Lianping Xing
چکیده

Patients taking antidepressants, including Clomipramine (CLP), have an increased risk of osteoporotic fracture. However, the effects of CLP on bone metabolism are unknown. Here, we demonstrate that WT mice treated with CLP for 2 weeks had significantly reduced trabecular bone volume and cortical bone thickness, associated with increased osteoclast (OC) numbers, but had no change in osteoblast numbers or bone formation rate. Bone marrow cells from CLP-treated mice had normal OC precursor frequency, but formed significantly more OCs when they were cultured with RANKL and M-CSF. CLP promoted OC formation and bone resorption and expression of OC-associated genes. CLP-induced bone loss was prevented by Zoledronic acid. At the molecular level, CLP inhibited the activity of the ubiquitin E3 ligase Itch. CLP did not promote OC formation from bone marrow cells of Itch-/- mice in vitro nor induce bone loss in Itch-/- mice. Our findings indicate that CLP causes bone loss by enhancing Itch-mediated osteoclastogenesis, which was prevented by Zoledronic acid. Thus, anti-resorptive therapy could be used to prevent bone loss in patients taking antidepressants, such as CLP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells

Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the p...

متن کامل

Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins

OBJECTIVES Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. METH...

متن کامل

Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1–SUFU Interaction in PDA Cells

Dysregulation of Hedgehog (Hh) signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA). Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our d...

متن کامل

Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation.

UNLABELLED Inhibitor of apoptosis (IAP) proteins play a central role in many types of cancer, and IAP antagonists are in development as anticancer agents. IAP antagonists cause apoptosis in many cells, but they also activate alternative NF-κB signaling through NF-κB-inducing kinase (NIK), which regulates osteoclasts. In bone metastasis, a positive feedback loop between tumors and osteoclasts pr...

متن کامل

Antidepressants synergize with chemotherapy against cancer stem cells

1], the antidepressant drug desmethylclomipramine has shown an interesting synergistic effect with cisplatin, gemcitabine or placlitax on lung cancer stem cells. The fact that antidepressant drugs potentiate chemotherapy in poorly responding cancer is of major relevance, and opens up potential innovative therapeutic effects. But what are the underlying molecular mechanisms for this therapy? Can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017